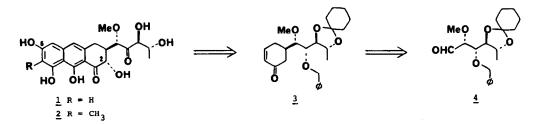
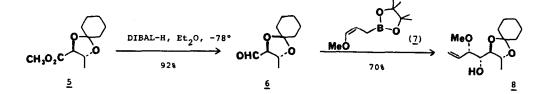
Tetrahedron Letters, Vol.24, No.22, pp 2227-2230, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain

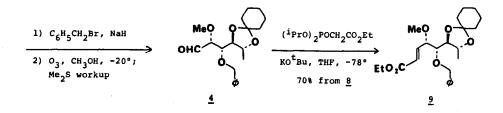

©1983 Pergamon Press Ltd.

Studies on the Synthesis of Olivin: Diastereoselective Synthesis of a Functionalized D-Fucose Derivative William R. Roush, *1 David J. Harris, and Brigitte M. Lesur Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139

Abstract. A short, highly diastereoselective synthesis of D-fucose derivative 4 by a route involving the addition of allylboronate reagent 7 to aldehyde 6 is described.

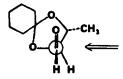
The aureolic acid group of antitumor antibiotics is a class of complex polysaccharides based on two adjycones, olivin (1) and chromomycinone (2).² Each of the naturally occurring antibiotics possess a disaccharide at the C.6 phenolic hydroxyl group and a trisaccharide attached to C.2-OH. Certain members of this group, including aureolic acid itself, have found application in the clinical treatment of human cancers. 2,3

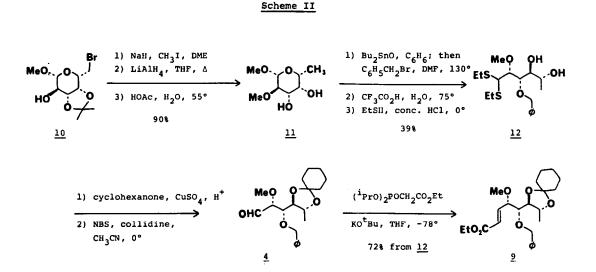

We are currently exploring an approach to 1 based on the sequence 4 + 3 + 1. Towards this end we describe herein a short, highly diastereoselective synthesis of D-fucose deri-



vative 4. This accomplishment has bearing not only on our approach to olivin, but also on the general problem of carbohydrate synthesis.

A renaissance of interest in the chemical synthesis of carbohydrates and functionalized monosaccharides has occurred in recent years.⁵ A conceptually simple approach to carbohydrate derivatives involves the addition of a synthetic equivalent of an allylether anion to an aldehyde.⁶ Although recent publications from a number of laboratories have reported such transformations with achiral aldehydes, $\frac{7}{100}$ with one exception the issue of aldehyde diastereofacial selectivity (i.e., the Cram-anti-Cram addition problem)⁸ has not been addressed.


Reduction of ester 5 (available by three steps from L-threonine)⁹ with 2.5 equiv of DIBAL-H in Et₂0 (-78°C; H₂0 quench) afforded a hydrate^{4e} which was dehydrated (CH₂Cl₂, reflux, sohxlet extractor containing 4Å molecular sieves) to give 6 in 92% yield. A solution of <u>6</u> and (Z)-boronate $\underline{7}^{7a}$ in dry hexane were mixed at -78° C and allowed to warm to room temperature. The mixture was then stirred for 24-48 h before being quenched with triethanol amine. In this manner alcohol <u>8</u>^{10a,b} (mp 61-62°C; [a]¹⁹_D + 32.0° (c=0.3, CH₂Cl₂)) was obtained in 70% yield with greater than 95% diastereoselectivity. Benzylation of <u>8</u> (C₆₅CH₂Br, NaH, DME, reflux, 80% yield^{10a,b}) followed by ozonolysis (O₃, CH₃OH, -20°C; Me₂S workup) afforded crude aldehyde <u>4</u>^{10a} which, without purification, was transformed to ester



 $9^{10a,b}$ ([α]_D¹⁹ + 24.8° (c=0.68, CH₂Cl₂)) in 70% overall yield from <u>8</u> by a modified Wadsworth-Emmons reaction.¹¹ We are currently exploring routes to cyclohexenone <u>3</u> from <u>9</u>.¹²

The stereochemistry of $\underline{4}$ and $\underline{9}$, and hence $\underline{8}$, was confirmed by the independent synthesis of $\underline{4}$ and $\underline{9}$ from D-galactose derivative $\underline{10}^{13}$ as outlined in Scheme II.¹⁴ These data are consistent with the interpretation that $\underline{8}$ is produced by a Felkin-type addition 5g,15 of boronate $\underline{7}$ to $\underline{6}$ with carbon-carbon bond formation occurring anti to the polar C-O bond, as illustrated by the following diagram. Efforts to develop a general synthesis of carbo-

hydrates based on the addition of allyl ether anion equivalents to aldehydes are in progress and will be reported in due course.

Acknowledgement

This research was supported by grants from the National Cancer Institute (Grant No. CA-29847 and Training Grant No. T32-CA-09112).

References

- 1. Roger and Georges Firmenich Assistant Professor of Natural Products Chemistry.
- Remers, W.A. "The Chemistry of Antitumor Antibiotics," Wiley-Interscience: New York, 1979; Chapter 3, and references cited therein.
- Calabresi, P.; Parks, R.E., Jr. in "The Pharmacological Basis of Therapeutics," 6th ed., Gilman, A.G., Goodman, L.S., Gilman, A., eds.; Macmillan: New York, 1980; p. 1296.
- 4. Studies on the synthesis of olivin have been reported: (a) Dodd, J.H.; Garigipati, R.S.; Weinreb, S.M. J. Org. Chem. 1982, 47, 4045; (b) Franck, R.W.; John, T.V.; Olejniczak, K.; Blount, J.F. J. Am. Chem. Soc. 1982, 104, 1106; (c) Thiem, J.; Wessel, H.-P. Annalen 1981, 2216; (d) Franck, R.W.; John, T.V. J. Org. Chem. 1980, 45, 1170; (e) Hatch, R.P.; Shringarpure, J.; Weinreb, S.M. Ibid. 1978, 43, 4172.

- 5. For leading references, see (a) Roush, W.R.; Brown, R.J. J. Org. Chem. 1982, 47, 1371; (b) Lee, A.W.M.; Martin, V.S.; Masamune, S.; Sharpless, K.B.; Walker, F.J. J. Am. Chem. Soc. 1982, 104, 3515; (c) Minami, N.; Ko, S.S.; Kishi, Y. Ibid. 1982, 104, 1109; (d) Danishefsky, S.; Kobayashi, S.; Kerwin, J.F., Jr. J. Org. Chem. 1982, 47, 1981; (e) Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1981, 1005; (f) Fronza, G.; Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G.; Zirotti, C. Tetrahedron Lett. 1982, 23, 4143; (g) Kozikowski, A.P.; Ghosh, A.K. J. Am. Chem. Soc. 1982, 104, 5788; (h) Mukaiyama, T.; Yamada, T.; Suzuki, K. Chem. Lett. 1983, 5.
- For a review of the diastereoselective addition of allylmetal compounds to aldehydes, see: Hoffmann, R.W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555.
- (a) Hoffmann, R.W.; Kemper, B. <u>Tetrahedron Lett. 1982</u>, <u>23</u>, 845; <u>1981</u>, <u>22</u>, 5263; (b) Wuts,
 P.G.M.; Bigelow, S.S. J. Org. Chem. <u>1982</u>, <u>47</u>, 2498; (c) Yamaguchi, M.; Mukaiyama, T.
 <u>Chem. Lett. 1982</u>, 237; (d) Yamamoto, Y.; Saito, Y.; Maruyama, K. <u>Tetrahedron Lett. 1982</u>, <u>23</u>, 4959.
- B. (a) Cram, D.J.; Abd. Elhafez, F.A. J. Am. Chem. Soc. <u>1952</u>, <u>74</u>, 5828; (b) Cram, D.J.; Kopecky, K.R. <u>Ibid.</u> <u>1959</u>, <u>81</u>, 2748.
- 9. See Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G. <u>Tetrahedron Lett. 1981</u>, <u>22</u>, 4017; Fronza, G.; Fuganti,C.; Grasselli, P.; Marinoni, G. <u>Ibid. 1979</u>, 3883, and references cited therein.
- (a) The spectroscopic properties (NMR, IR, mass spectrum) of all new compounds were fully consistent with the assigned structures. (b) A satisfactory combustion analysis (±0.3% for C,H) was obtained for this compound.
- 11. Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873.
- 12. For a study of the stereochemistry of vinyl cuprate additions to <u>9</u> and related systems, see: Roush, W.R.; Lesur, B.M. Tetrahedron Lett., the following manuscript in this issue.
- 13. Bernet, B.; Vasella, A. Helv. Chim. Acta. 1979, 62, 2411.
- 14. The rotation of 9 prepared from 10 according to Scheme II was $[\alpha]_D^{19} + 21.5^\circ$ (c=0.77, CH₂Cl₂).
- 15. Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199.

(Received in USA 14 February 1983)